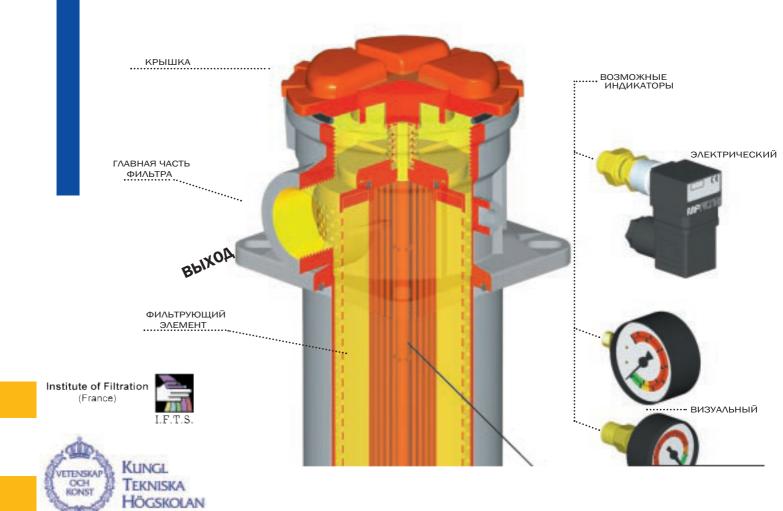
Серия **SF2-2-5**0 Всасывающие фильтры


Описание

Всасывающие фильтры SF2-250 разработаны для установки в боковую стенку бака ниже уровня масла.

Эта новая разработка фильтра, озволяющая менять фильтрующий элемент без откачки масла из бака. Отвернуть крышку фильтра и закрыть клапан,

предотвращающий утечку масла.

Фильтры SF2 250 используются с вакуометрами или с электрическими вакуумными выключателями. Эти фильтры снабжаются перепускным клапаном. Данные фильтры подходят для насосных станций, мобильной техники и промышленного производства.

Royal Institute of Technology

КАНТИНТАМ КОНОЛОН ОНИНАЛЭЖ ОП

ВХОД

MP Filtri - Технология Фильтрации

Фильтрующий элемент:

Материалы Заглушка: Опорная труба(внутренняя): Опорная труба(внешняя):

> Нейлон Сталь Металл

Материал фильтрующего элемента Номинальная тонкость фильтрации

Сетчатый фильтрующий элемент (степень фильтрации определяется в микронах, исходя из максимаьного диаметра частицы загрязнения, которая проходит через фильтрующий элемент).

Площадь фильтрации фильтрующего элемента

Тип SF2	250			
M25	1980			
M60	1980			
M90	1980			
M250	1980			
Значение в см²				

Корпус фильтра:

Материалы Верхняя часть фильтра

Уплотнение A Серия: Nitrile (Buna-N) Алюминий

Крышка Индикатор Нейлон Латунь

Рабочая

температура

От -25 до +110°C

V Серия: Viton

Если температура применения выходит за рамки, то пожалуйста, проконсультируйтсь с вашим поставщиком.

Перепускной клапан

Выставляемое давление

Перепускной клапан, давление срабатывания клапана: **B: 30 КПа ± 10**%

MP Filtri - Спецификация

Совместимость

с жидкостями

Верхняя и нижняя часть фильтра

Совместимы с:

- минеральными маслами (тип HH-HL-HM-HR-HV-HG по ISO 6743/4)
- эмульсиями на водяной основе (тип HFAE-HFAS по ISO 6743/4)
- синтетические жидкости (тип HS-HFDR-HFDS-HFDU по ISO 6743/4)
- гликоль (ти HFC по ISO 6743/4)

Спрашивайте для анодирующих версий

Фильтрующий элемент

По ISO 2943; совместимы с минеральными маслами (тип HH-HL-HM-HR-HV-HG по ISO 6743/4)

синтетические жидкости (только серии А и М (тип HS-HFDR-HFDS-HFDU по ISO 6743/4)

по эмульсиям на водяной основе (тип HFAE-HFAS о ISO 6743/4) и другим неуказанным жидкостям, пожалуйста проконсультируйтесь с вашим поставщиком.

Уплотнение

А серия

Nitrile (Buna-N) совместима с минеральными маслами (тип H-HL-HM-HR-HV-HG по ISO 6743/4) и эмульсиями на водяной основе (тип HFAE-HFAS по ISO 6743/4)

V серия

Viton совместима с синтетическими жидкостями (тип HS-HFDR-HFDS-HFDU по ISO 6743/4)

Типы индикаторов

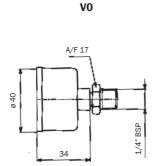
Описание:

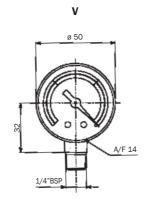
Фильтры серии **SF2 250** поставляются совместно с визуальным или электрическим индикатором

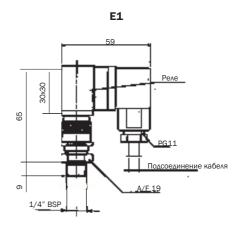
Визуальный индикатор

V Серия (индикатор адиальный) VO Серия (индикатор аксиальный) вакуометер: шкала 0÷76 cmHg вакуометер: шкала 0÷76 cmHg

Электрический индикатор


Серия Е1:


самоотключающий электрический индикатор (по умолчанию 20КПа ± 10%) (регулируемая настройка: от 15 до 90 КПа)


Информация об электричестве:

Макс. напряжение: 250 В 50÷60 Гц Макс. сила тока: 5 А сопротивления, 2 А индуктивности.

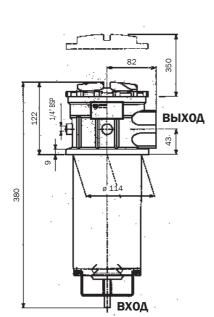
Степень защиты ІР65

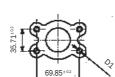
Основные параметры

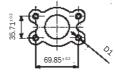
и размеры

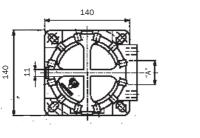
Типы фильтрующих М Серия

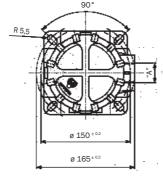
элементов


Металлическая сетка с тонкостью фильтрации 25, 60, 90, 250 мкм


Пример - M25, M60, M90 and M250


Пожалуйста используйте свою расчетную характеристику зависимости потерь давления от расхода, которую вы расчитали для фильтра.

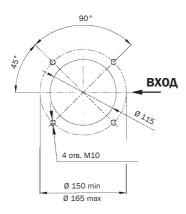

250


Следуя рекомендации размера фильтра и исольования минерального масла с вязкостью 30 $\text{мм}^3/\text{c}$ (сСт) для собранного фильтра (корпус и фильтующий элемент) с максимальным перепадом давления **8 \text{kPa} (0,08 \text{bar})**

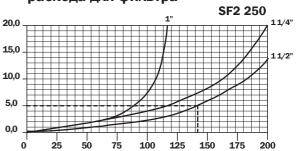
СЕРИЯ SF2 PA3MEP 250

Фильтрую щий элемент	Расход для ★ диаметра в 1", л∕мин		Расход для диаметра в 1 1/2",л/мин	Вес, кг **
M25	100	140	140	
M60	100	145	150	2.7
M90	100	150	160	2.1
M250	100	150	160	

^{*} Расход при использовании минерального маста вязкостью 30 мм 2 /с.


Резьба подсоединения

Обозначение	Α	Обозначение	Α
G1	1 1/2"BSP	G6	SAE 20
G2	1 1/2"NPT	G7	1" BSP
G3	SAE 24	G8	1" NPT
G4	1 1/4"BSP	G 9	SAE 16
G5	1 1/4"NPT		


Фланцевое подсоединение

A	D1
1 1/2"SAE	M12
3000PSI/M	
1 1/2"SAE	1/2" UNC
3000PSI/UNC	
	3000PSI/M 1 1/2"SAE

ОТВЕРСТИЯ В БАКЕ

Зависимость потерь давления от расхода для фильтра

^{**} Вес, включая фильтрующий элемент.

Расчет зависимости потерь давления от расхода

Зависимость потерь давления от расхода для фильтра и фильтрующего элемента соответствует стандарту ISO 3968

Полная потеря давления - Δ р полная = Δ р фильтра + Δ р фильтрующего элемента

Потеря давления на фильтре - Потеря давления на фильтре пропорциональна плотности жидкости

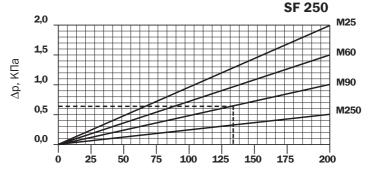
Потеря давления на фильтрующем элементе - Потеря давления на фильтрующем элементе пропорциональна кинематической вязкости поэтому всегда обращают внимание на температуру и реальную вязкость рабочей жидкости. Перепад давления на фильтрующем элементе расчитывается по следующей формуле:

 $\Delta p_1 \Phi$ ильтрующего элемента=(рабочая вязкость/номинальная вязкость)* $\Delta p \Phi$ ильтрующего элемента

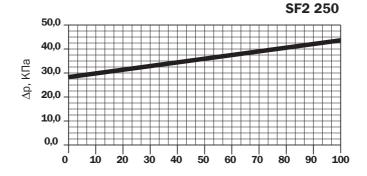
Номинальная вязкость= $30 \text{ мм}^2/\text{с}$ (сСт)

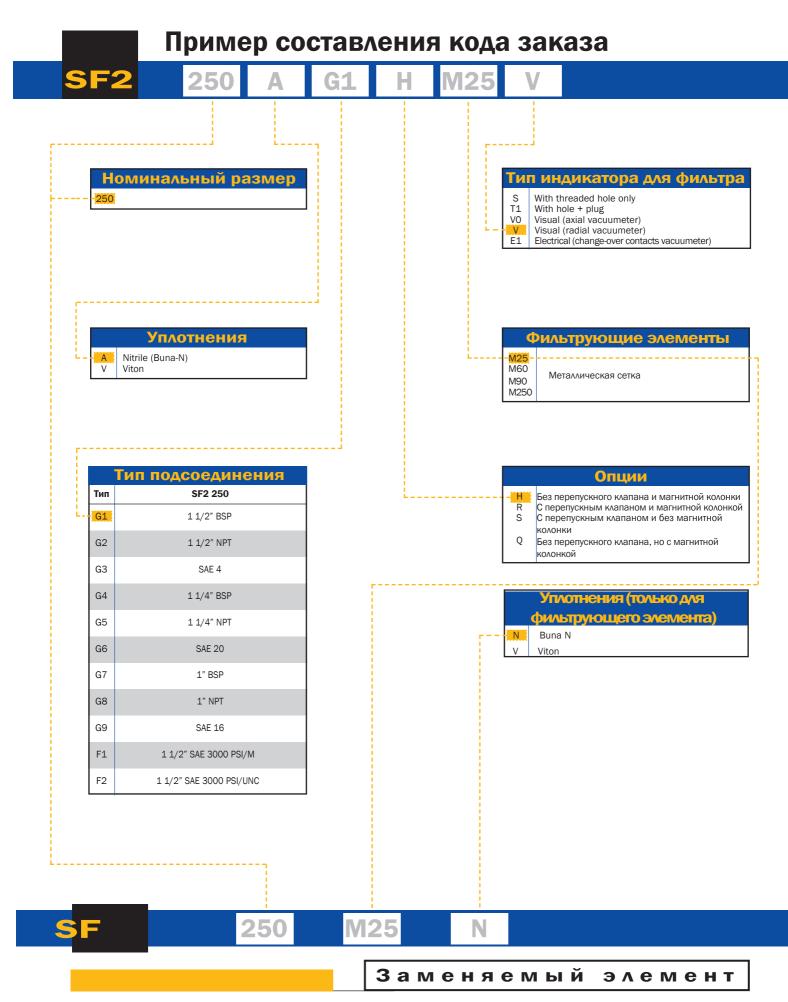
1 атм = 100 КПа

Пример выбора размера фильтра


П<mark>ример</mark>

- Потребителю требуется фильтр с расходом 140л/мин и подключением 1" 1/2
- Минеральное масло: ISO VG 46 (вязкостью 46 мм²/с (сСт) при температуре 40°С)
- М90 тонкость фильтрации 90 мкм
- Потеря давления на фильтре SF2 250 (подключение 1" 1/2) с расходом 140 л/мин Δ р=5КПА (см. график на стр. 5)
- Потеря давления на фильтрующем элементе (рабочая вязкость) 46 мм²/с (сСт) Δ р,=0.64*(46/30)=0.98КПа


• Потеря давления на фильтрующем элементе (номинальная вязкость) - SF2 250 M90 N с расходом 140л/мин Др=0.64КПа(стр. 6)


- Подная потеря давления Дрполная=Дрфильтра+Дрфильтрующего элемента=5+0.98=5.98 КПа*

Зависимость потерь давления от расходадля фильтрующего элемента

Зависимость потерь давления от расхода для перепускного клапана

MP Filtri - Гарантирует надежность фильтров только в случае использования продукции нашей компании и ее запасных частей

Data held in this publication is given only for indicative purposes. MP Filtri reserves to introduce modifications to described items for technical or commercial reasons. Copyright reserved.